DSN Progress Report 42-42 September and October 1977

A First-Principles Derivation of Doppler Noise Expected
From Solar Wind Density Fluctuations

P. S. Callahan
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The level of Doppler noise (DN) expected from solar wind (SW) density fluctuations
(DF) is derived beginning with the expression for refractive index variations. The
calculation takes account of up- and downlink paths and of the method actually used to
produce the DN values. The usual assumptions that the DF are frozen in, that the
large-scale radial variation can be separated from the DF, that the DF power spectrum is a
power law with “outer scale” k,, and that the DF are homogeneous on scales less than
2cAt, At = sample time, are made. The result agrees quite well with the observations of
DN by Berman (Refs. 4, 6, and 7). Corrections for the finite number of points used in the
actual algorithm are discussed.

l. Introduction

The present discussion is ‘meant to give a clearer understanding of the relationship of Doppler noise (DN) to density
fluctuations (DF) in the solar wind (SW) by providing a detailed first-principles derivation. The analysis is similar to that of
Refs. 1, 2, and 3, but is adapted specifically to the round-trip case and to the actual method used to obtain DN. This analysis will
also clarify the usefulness of DN for radio science (Ref. 4).

Il. Basic Principles of Doppler Noise

The phase variations measured by DN are produced by refractive index variations along the path which occur because the index
of a plasma is proportional to the electron density N:

phEl-—— = - (1)
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where f is the radio frequency and A = 80.6 in MKS units. Local variations of N on time scales >> 1 hour are nearly 100%in the
SW. The total change in phase for a reference point in traveling to a spacecraft and back is

q>0=j ﬂ=ij ds 1255 ds[l+§§+AaN] o
aypatn (0 S (L= (N+EN)TZ € 27 2

where c is the speed of light. The approximation is very good for S-band propagating in the solar wind.

Because we are interested in phase fluctuations the result is not sensitive to the average value of N but only to the fluctuations
SN. For this analysis we will assume that the spacecraft is at rest so there is no ordinary Doppler tone. This latter assumption is an
accurate approximation of the mechanization of DN: predicts are subtracted from the observed Doppler and then a linear fit is
done to 15 points to remove any remaining trends. Because of this DN will not be sensitive to slow (3> 30 At, At = sample time)
changes in the refractive index. :

In summary, we are interested in the phase change

5d = if (—A—> 5N ds 3)
C 2f2
raypath

where 8N is a function of time and position along the raypath. §N is defined so that §® has a mean of 0. At any instant one
would measure a phase deviation §®(t). However, Doppler is not an instantaneous measurement but is accumulated (or averaged)
over some sample time At. To work in the “accumulation picture” one uses the time derivative of Eq. (3) so that the phase

deviation from t, to (t; + mAt)is
ty+m At A .
Ad (t,, mAt) = dt <2_fc) SN ds 4)
ty raypath

where the dot denotes the time derivative of 6N. Doppler is produced by differencing two adjacent phase accumulations and
dividing by the sample interval. Because we have assumed that there is no velocity-induced Doppler tone, the “Doppler” produced
in this case is immediately the material for producing Doppler noise (mean-squared phase fluctuation).

M-1 [A@ (t,, (m+1) AD) - AD (tl,mAt):|2
Hz?2 (5

1
DN (t,, At M) = 17 3 X

m=0

where M is the number of points included in the linear fit. Note that what we are calling DN is the square of the experimental
quantity reported by Refs. 4, 6, and 7.

If we carry out the prescription of Eq. (5) using Eq. (4), we have
A 2 M-1 ty+(m+1)At . 2 ,
DN (t,, ALM) = (5] & Z dt §Nds| Hz (6)
. m=0 t1+mAt raypath

An obvious simplification results if the order of integration is interchanged so that 6N is evaluated at the two endpoint times. The
interchange is allowed as long as the DF are homogeneous on scales <2cAt, and the round-trip light time is not so large as the time
scale on which the magnitude of 8N changes (~1 day in the SW). The first requirement is a statement of the Nyquist theorem that
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data sampled at At contain no information about frequencies > 1/2*At. Recall that DN is also not sensitive to long-term trends
> 2MAt.

We use the above assumption to carry out the time integral in Eq. (6). We also explicitly exhibit the up- and downlink parts of
the raypath. Time is measured at the receiver and the geometry is shown in Fig. 1. The result is

2 M- L
DN (t,, At, M) = (chAt) Z [ dz [BN [r,t, +(m+1) At - (2L - 2)/c]

m=0

=N [r, t, +mAt - (2L - z)/c] + 6N [r,t, +(m+1) At - z/c]

2
=8N [r, t, + mAt- z/c]] Hz? (7)

where r is the heliocentric position vector.
To proceed with the evaluation of DN we must have a way of characterizing the sixteen products represented in Eq. (7). We
approximate the sum over m by an integral over t. We assume that the time and space integrals may be interchanged. This is valid

if the correlation scale of the medium is << L, and for the “frozen-in” assumption which will be used later. We show these
operations in just the first term of Eq. (7).

_ (AN !
DN(tl,At,M)— (M),/O dz/o dz———/ SN [ Lt tt+At-(2L -2z)/c]

SN [yr’,t1 +t+At-(2L—z')/c]} dt

where T, = MAt and the two terms of the product are distinguished by primed and unprimed coordinates. In the limit Ty >
the t- mtegral gives the autocorrelation function of 8N, F(Ar,r), which depends only on the separation in time and/or space of the
DF. The limit Ty; - e requires that Tyy >> T, where T, is the correlation time of the medium. For M = 15-18 and At < 60 sec
as in the DN algorithm this condition is not accurately fulfilled in the SW (T, > 1 hr, for the larger changes, SN/N ~ I).
Therefore, we will do an approximate analysis consisting of two terms: the first, the result for Ty = °=; the second, a correction
(involving the autocorrelation function as an approximation for the mean-squared density change) for the fact that Ty; < T, . The
autocorrelation function is symmetric, so we have only 8 terms:

A \2 t b , :
DN (t,, At, M) = (m) 2F1(t1)f dz[ dz' <2 [F [r-1, (z-2")/c]
0 0

+F [r-r, (2L—z—z')/c]] - [F [r-1', - At +(z - 2)/c]
+F[r-r, -At+(QL-z-2)/c] +F [r-r, At+(z - 2))/c]
+F [r-r, At +(2L—z—z')/c]:|}
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(2cht (t)f dz/ dz[ de {2[F[r—r t+(z-2")c]]

} Hz? (8)
where the second term contains all the F’s of the first with the arguments modified by the addition of t. The factor F () is to
account for the fact that the general level of activity may vary on a time scale longer than T, (i.e., if we use a yearly average value
for F (Ar, 7), the daily value of DN (At, T,,) could easily be a factor of 2 higher or lower than we would expect). The terms with
L arise because we are considering round-trip measurements. The At’s occur because of the phase accumulation time. Reference 3,

in doing a one-way analysis of range data, uses only the first term of Eq. (8).

So far there has been no use made of any particular properties of the SW. The effect of any fluctuating plasma, whose
statistical properties satisfy the restrictions discussed above, on round-trip Doppler data is given by Eq. (8).

lil. Doppler Noise From Solar Wind Density Fluctuation

We now proceed to investigate Eq. (8) for the case of SWDF. First, we note that the SW has a large-scale radial variation which
should be separated from the autocorrelation function, just as the long-term time variations were. We take
Flr-t',7] = b(r)G[r-1' 7] )
where b(r) gives the radial variation of the mean-squared density,

b(r) = ONT(A /n)*"2Y (10)

where N is the tofal RMS DF at radius A, and y allows for radial variations different from r=2 (see Section IV).

Time and position for the SWDF are usually related by the “frozen-in” assumption because the speeds at which disturbances
propagate are much less than the bulk velocity. Thus, G(r,7) = G(r - v7), where v is the bulk SW velocity. For simplicity we will
assume that v is not a function of |rf and that it is only in the radial direction. We take the raypath to be in the x-z plane (see
Fig. 1) so that v = (v,, 0,v,): note that the components of v are functions of position along the raypath. Equation (8) may be
rewritten as

L z-L
DN (t,, At,M) = }32] dzb(r)j (-dQ) {2 [G [R -v /]
0 z

+G[R-v(2L-2z +Q)/c]] - [G [R - v(-At +&/c)]

+G [R-v(-At+ (2L -2z + Q)/c)] +G [R - v (At + /)]

+G [R-v(At+(2L-22 + O)/c)] ]}
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L z-L I
_32/ dzb(r)f (—dQ)j ,lgi {2 [G [R-v(t+L/c)]
0 z Ty M

+... }Hﬁ (11)

where 8 =z - z', R = (0, 0, 2)' B2 =2F  (t,)(A/2fcAt)?, and the second term contains all the G’s of the first with the arguments
modified by t.

The well-studied characteristic of SWDF is not the autocorrelation but its Fourier transform, the power spectrum. The
relationship between the two is

g(k) = /°° G(R)eT™ R d*R (a)
— . (12)
G(R) = [w g(k)etik'R (;1%;‘3 (b)
where k is the wavenumber vector of the DF. Experimentally it is found that the spectrum can be well represented by
-3
ek = w (13)

(K2 +a2k? +a2k? + a2k 2] 612
[ X X vy zz

where k, is the “outer scale” of the DF, k, = 2m/¢ , € = 10® km, the a’s allow for the possibility that the spectrum is
anisotropic (there is no good experimental evidence that they differ from 1, but they are easy to keep in the computation), and
the spectral index 8= 3.5 - 4.0 (see Section IV). We use Eq. (12b) and Eq. (11) to obtain

L Rl 3 z-L AQ(k _k- / )
DN (t,, At, M)=2B2f dzf k g(k)[ (d)e rvIe
0 ~ oo z

d
(2m)°
{ [1 +e—i2k'v(L—z)/C] [1 _e—ik'vAt]

M

_/ _?_t e—ik'vt [1 +e—i2k'v (L—z)/C] [1 _ e—ik'vAt] } HZ2 (14)
T

M

where use has been made of the fact that G is real, so we need consider terms of only one sign in At.

In the SW at heliocentric distances greater than a few solar radii the distance scale is much greater than the scale of the DF. The
limits on the -integral can then be approximated as *eo, so it gives a delta function 276(k, - k + v/c). The delta function can be
used to do the k,-integral with k, >k v, fc (1-v,/c)=k v, V/candk - v=k v V, giving

L R 2
DN(t ,At, T, ) = 2B2 | dzV b(r) dkg(k,k,kv V/c)
1 M (71T)2 X y X X
0 R

46



—i2k_v_V(L-z)/c Sik v At
Xe[1+e X% l-e XX
i dt e—ikxvat [l +e—i2kxva(L—z)/c] .
T TM

[1 - e'ikxvxm]} Hz? (15)

where k, drops out of the exponentials because v, = 0.

For g(k) of the form of Eq. (13) the ky-integral can be carried out to give

ka-3 JTT(@-1/2)
a, (2m)? T (8/2)

y w dk, [l N _iszVXV(L—z)/c] .
[k2 + k2 (32 + a2 V2)](ﬁ'1)/2 ¢
hnhad o X VX z

-ik_v_At Codt ik vt )
|- X' x _ XX r.3[...] H 16
[i e ] /T TMe [ ]} z (16)

M

L
DN (t,, At, Ty) = 2B2f dz b(r)
0

where the second brackets are the same as the first.

The four parts of the first term of Eq. (16) can be integrated using

oo

B dx e71XY N y\n \/;
[ (1+x2)(2nm_ 2 (2) ['(n+1/2) Kn(}’) (17)
For Eq. (17) we have § = 1 =2n + 1 orn=(§ - 2)/2, and

x =k (a2 +a§v2)1/2/k0 =k a/k,

Before doing the k-integral of the second term, we must consider the effect of the t-integral. It is easily carried out to give a
factor [e_ikXVXVTM/(~ikvaVTM)]. For [k, 1 2ky = 27/2v, T,, the exponential term varies rapidly so that there is little
contribution to the integral. This effect is important if 2v T\, <€ _(ky >k, ), because the k_-integral of this (correction) term is
not cut off before reaching the sloping part of the spectrum. To repeat: when 2v T,; <¢_, the mean-squared phase fluctuation
will depend on the averaging time MAt. We approximate the second term of Eq. (16) by finite limits on the k_-integral and have

L

DN (1,. At Ty,) = 2B2f _debV [2“-‘ I(n)

o aa,l(3/2) antl
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(kovaAt) n (2k0va (L- z)) "
U S AROP T ) KO

kov, V (At +2(L-2)/c)\" L
_( - ) K () +432f dz b(r) *
0

~i2 kvaV(L—z)/c] *

rVkoﬁ‘:” VaT (8-1)2) ky dk, [1 te
a, (2m? T (8/2) f [k +az i) e=nf2

—

-ik_v_At
l-e *X Hz? (18)

-

where T' is the gamma function, K is the modified Bessel function of order n, and the arguments of the K’s are the same as the
respective factors in front of them. This result is similar to that of Ref. 3, but contains all the terms required to describe two-way
Doppler data. The analysis of the second term requires some care and is deferred until the basic result for long averaging times
(Tp = ©°, ky; > 0) is completed.

We are now faced with the task of integrating Eq. (18) along the raypath. First, we assume that only b(r) and v, (the velocity
across the raypath) depend on z. A much greater simplification occurs when the order of magnitudes of the arguments are
considered. We take typical numerical values k= 27X 1076 km~1, v, = 400 km/sec, At = 60 sec, L= 3 X 10® km, a = a, =
V =1 and find kv, At = 0.15, 2k v, L/c = 5.0, L/cAt = 17. Thus, except for z= L, At << (L - z)/c; and for z = L the coefficient
b(r) will make the contribution small. In this limit we may treat the two differences in Eq. (18) as derivatives. The only z

dependence in the first term is the variation of v, along the raypath.

We proceed to simplify the geometric expressions in order to integrate along the raypath. From Fig. 1 we have

12 = (z-qu)? +q°=q* (W2 + 1)

<
[}

VO/(l +u2)ym/2
dz = qdu (19)

where v is the radial velocity of the SW and m slightly different from 1 allows for nonradial velocities. We ignore the variation of
v, along the raypath since it always occurs as v,/c < 1073. We will also suppose that the a’s are constant along the raypath as
there is no evidence to the contrary. For k (r) we chose k, (1) =k, (q/A|)* (1 + u2)%/2 to find the effects of an outer scale which
changes with heliocentric distance. Recalling the form for b(r) from Eq. (10) and using Bessel function relations to reduce the
derivatives introduced, we have

VENZ (A [q)**27 gk (v_At)? K, 2
DN, (t,.At,T,) = 2B L1 Lo [ du [2“'3 Pn-1) Y+
i iy

ma, 2 IN(TPAPARE 22

¢ (1) 2es

2q (k,v, 402 (g/A )

*

(@A)t +u2>“2**‘m+‘“2} '
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4 (21«1 (/A" v,Va (u, - 1)

du ac(1 + u2)(m-9)/2 ) K, C)f( 122 (20)

Because of the large power of u in the denominator (~5), so long as u>>3, i.e.,, q < 0.3 AU, the limits on the integral can be
considered as oo for the first term, and the second term will be less than the first. The second term is integrated by parts, and the
only contribution is for u = u, . The result of the integration along the raypath is

A \2 5N? (AI/Q)“” k,q(v,At)? v?
DN(t,At,T)=F(t)( ) *
11 M L 2fcAt 7Tay a3F (5/2)

[(VAT@-1)(g/A )T ((3+2y +2m- sz)/z)]

L (4 +2y+2m - 0)2)
[ .2 2y-2-7-2/2 Q n

X a“c (1 +uj) 2k, (q/Al) v, VL Kn( ) He2 @n
| 2" qk v2 At V2 (g/A)) ac(1 + p2)m-012

where n = (8 - 2)/2. For a long averaging time T,,; = oo, this gives the mean-squared Doppler noise in terms of the mean-squared
density fluctuation at 1 AU (A,) appropriate to the time of observation F (t;)8N2, the outer scale size k,, the radial solar
wind velocity v , and the sampling time At. Note that to first order the sampling time drops out completely. This result will be
discussed further in Section IV,

We now return to the correction term for finite averaging times in Eq. (18). The important point is that k,, >k _, so we divide
all the k’s by ky,. This shows the basic (kg‘—z)—l o Atf~2 dependence that we wish to evaluate. We note that kyv, At << 1,50
the second term in the integral can be expanded. The overall correction term is

L dzb(r) Va/m kP3 U dx (= (rx/Ma)2 4 (i A\ aniXD
_ a2 0 X [- (mx/Ma)* + (imrx/Ma) e 'XP ] s 5
DN2 (tl’ At’TM) 4B f (777)233 F(ﬁ/") K82 [ 2 4 271(B-1)/2 Hz (22)
0 - v =) ™M 0 xJ +x7]

where x = ak /Ky, x, =k, /ky, p=a(L- z)/aMcAt, and we have made use of the fact that the final result must be real.
The x-integral in Eq. (22) can be evaluated approximately. though we note that it is mainly a numerical factor (there is

z-dependence in the second term) of order 1. Finally, we use Eqgs. (10) and (19), the expression for k (r) following Eq. (19), and
the approximation u,, 4, = °° to arrive at the correction term

*

A V2 ANT(A /T K q (v A2V
2fcAt

DN_(t ,At, T, ) = F (t)(
201 M i1 ma, a3F(B/2)

-

2a (M)5'3 (kv 007 (@/A )**D T (n - 1/2)]

vim (B-3)T (n,)

Sin P,

- ~ 2 2 o)
IPEICEE P, M, (cos pu,uz),(’n(l +V1+x2)| > Hz (23)
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where n, =2+ - 9B - 3)/2 + m (B~ 2)/2, p, =nqg/aMcAt, and all other terms are as before. Note that the coefficient in front
of the braces is the same as in Eq. (21). It should be emphasized that this form of the correction term applies only for
My, At <{, or At< 60 sec, for M= 15 -18. The result shows the At-dependence At8~4 that DN can be expected to have when
the averaging time MAt is less than the correlation time ¢ /v, .

IV. Discussion and Conclusions

The sum of Egs. (21) and (23) gives the mean-squared Doppler noise (DN) in Hz?2 expected from solar wind (SW) density
fluctuations (DF). Because the DF are functions of both time and position, considering them as a factor times the local average
density SN(R,t) = e(r,t)N(r) would not be useful as the important information would be contained in the correlation function of
e. Thus, it is difficult theoretically to relate DN to the total columnar content. If a proportionality exists (Refs. 6, 7) further
analysis of the structure of SWDF will be needed to find the physical basis of the proportionality. However, it will be shown
below that the theory developed above provides a completely adequate explanation of DN. It also shows that DN can be useful
for studying the spectrum and amplitude of SWDF, and perhaps also the SW velocity near the sun.

We proceed to a numerical evaluation of Eqs. (21) and (23). First, we set a = a, =V =1, as they are not known to differ much
from 1. For the SW parameters we take 5N, = 5 cm™3, v_ = 400 km/sec, k; =2mX 1076 km~1. A number of observations of DF
(Refs. 5, 6) suggest y = -0.2; however, for now it will be kept as a parameter. We will use the geometric parameters q=0.1A,,
L =2A,, and recall the restriction iy 3. For the sampling parameters we take M = 15, At =60 sec, f = 2.2 GHz. Since the I'
functions are not very sensitive, we use $=4,v=0,2=0, m =1 in them. We then find

DN (t,, At T,) = F (1))

4.47 X 107% 10%Y (5N, /5)? (v, /400)>
£
(9/0.1 A)*"27

2.64 X 107% (q/0.1 A))?
0.589 (0.1)° (q/0.1 A )* + *
(At/60)?

[(0.503 (qf0.1 A (L2 A)) K ( )]

5.08 . S Sn Sm Hy2
2% 109y (At/60)4-ﬁ) M\ 9(ar60) ) T\ 9(at60)) | 9(at/60) 208

where critical dependences on q, At, 8, v, and € have been retained, and A, =1 AU. We see that, except for the largest values of q
(= 0.3 A,), the second term is not important. The value of the last bracket is +0.56 for At = 60 sec and -0.50 for At = 10 sec.

What do observations tell us about the remaining free parameters 8, v, €, in Eq. (24)? Many observations of SWDF (Refs. 2-6)
find that 3.4 <3< 4.0. [t will be shown below that DN observations seem to further restrict this range. Reference 5 finds that
SWDF power spectra decline as q72-6*0-4 (y = -0.2 £ 0.2) for Viking S-X Doppler data from August to December 1976. Refer-
ence 7 finds DN @« q~2-¢ for a longer span of Viking data. Reference 6 interprets this dependence of DN as vy=40.3,¢=1.Such
an interpretation is compatible with Eq. (24); however, several points should be made in this regard. First, the uncertainty of vy
(unstated by Ref. 6) is as large as the value, and systematic effects will tend to lead to the observed slow decline; so any specifica-
tion of parameters must be viewed with caution. Second, Ref. 3 finds 7 = 0 for the decline of the average density. Third, there is
no support in the literature for a strong dependence of the outer scale on heliocentric distance. Fourth, the acceleration of the SW
near the sun has been ignored in this analysis and will tend to produce the observed slow falloff (DN o (6Nxv)?). Finally, the

amplitude of Eq. (24) would not agree with observations for v =+0.3, ¢ = 1. Thus, for the remainder of the discussion we take
¢=v=0.
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The fact that Ref. 4 is able to determine the dependence of DN on sample time indicates that § < 4. Reference 4 finds DN
o« At=0-6 (for the squared quantity used in this article), implying 8 = 3.4. A numerical evaluation of Eq. (24) shows that for such
a low value of 8, the third term is much less than the first so that no sample time effect would be seen. On the other hand, for
B3> 3.8, the third “correction” term would be larger than the first. DN observations then lead to 3.5 << 3.7. These are fairly
tight limits on an important parameter of SWDF and are in good accord with many other measurements (Refs. 2-6).

As we have now fixed all the parameters in Eq. (24), we need to check that it gives reasonable results for DN. With the
parameters chosen and for 60-sec sample times only the first term is important, so we have

447X 107 (8N, /5)? (v,/400)?

(a/0.1A,)°

DN (t,,At, T,) = F (t) ( )(0.589)Hz2

i

2.6 X 1073

F, (t)) (6N, /5)? (v0/400)2)
Hz? (25)

(a/0.1A )

Figure 2 is taken from Ref. 7, and points evaluated from Eq. (25) are plotted with the data and the model of Ref.7. The
agreement is quite good considering that nominal values of 6N, v , v(= 0), F,(t;) = 1 were used. It seems likely that with large
amounts of data these parameters could be refined by fits to DN. Thus, DN could be a useful radio science tool putting limits on
(8N, X v,), 8, and v. and the residuals from such a model would provide estimates of F,(t,) for correlation with solar features.

The relationship between solar wind density fluctuations and Doppler noise has been derived. It is shown that with nominal,
well-known values for SW parameters the agreement between theory and observation is quite good.
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g = (L~ A‘ cos €)/q
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Fig. 1. Earth — spacecraft geometry



DOPPLER NOISE, Hz

j=l

DAY OF YEAR, 1976

Fig. 2. Viking Doppler noise and the ISEDC model vs. day of year (295 to 355) (from Ref. 7)
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